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Transient Analysis of Ferrite in
Three-Dimensional Space
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.&tract —The anisotropic medium has been applied to realize the

nonreciprocal devices. The characteristics of these devices have become

more advanced through the appearance of various materials and the

miniaturization of the circuit created by the integration of circuits in MIC.

In particular for microwave and millimeter-wave circuits, ferrite is a typical

gyroanisotropic medium. So a significant amount of research and many

analyses have been carried out to develop nonreciprocal devices rising

ferrite. To obtain more exact determinations of the properties of these

devices, it is necessary to analyze three-dimensional space due to their

complicated structures and the medium conditions. And recently, high-speed

digital technology has been developed, so that it is important to analyze the

electromagnetic field with time domain. This paper presents Bergeron’s

formulation of vector analysis for magnetized ferrite in a three-dimen-

sional space and time domain. Resnfts are provided for two cases with

respect to the relative angle between the directions of the dc magnetic field

and wave propagation. For both cases, the results are compared with

analytical ones, and the validity of the formulation is verified.

I. INTRODUCTION

T HE ANISOTROPIC medium has been applied to

realize such nonreciprocal devices as gyrators, isola-

tors, and circulators for the microwaves, millimeter waves,

and optical waves. The characteristics of these devices have

become more advanced through the appearance of various

materials and the integration of circuits in MIC, which has

brought about miniaturization. In particular, for micro-

wave and millimeter-wave circuits, ferrite is a typical

gyroanisotropic medium. So a considerable amount of
research and many analyses have been carried out to

develop nonreciprocal devices using ferrite.

In the past, most of these studies have been performed

using static and two-dimensional analyses. However, to

determine more exactly the properties of these devices, it is

necessary to analyze three-dimensional space because of

the medium conditions, which involve the tensor perme-

ability y of ferrite and their complicated structures. Re-

cently, high-speed digital technology has been developed

and so it is important to analyze the electromagnetic field

with time domain. In these studies, a unified formulation

for both the boundary conditions and the characteristics of

medium is indispensable for calculating exact total three-

dimensional field responses in a time domain. Further-

more, the transient analysis of an electromagnetic field not

only clarifies the variation of the field in time but also

provides information on the mechanism by which the
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distribution of the electromagnetic field in the stationary

state is brought about. However, the computations involv-

ing all these medium and boundary conditions by analyti-

cal methods are usually very complicated and difficult.

Thus a numerical analysis method is required. The recent

advances of the digital computer in both speed and mem-

ory capacity enable us to solve the equations for actual

subjects. But conventional numerical methods are insuffi-

cient for the analyses in three-dimensional space and time

domain.

Therefore a new method has been proposed for the

transient analysis in the three-dimensional space. The

method is based on the equivalent circuit of Maxwell’s

equation and a formulation by Bergeron’s method (re-

ferred to here as the present method) [1], [2]. Useful results

have been reported by making use of the characteristics of

this method [3]–[6]. The present method has the character-

istic that both voltage and current variables for each

direction are assigned at each node in the lattice network.

This property permits calculation of the effect of coupling

between the magnetic fields, which is related to the off-

diagonal elements of the permeability tensor. So the pre-

sent method is useful for the analysis of nonreciprocal

devices involving an anisotropic medium.

However, the finite difference time-domain method and

the transmission line matrix method [7]–[9] do not have

this merit, because of assignment of the single field vari-

able at each node. For the two-dimensional space and time

domain, the effect of ferrite has already been formulated

by the present method [10]. In this paper, the formulation

of the magmxized ferrite in the three-dimensional space

and time domain is presented. The characteristics of the

formulation are summarized as follows.

1) An anisowopic medium is assumed with the lumped

elements in each node in the equivalent circuit of Maxwell’s

equation. The tensor permeability of the ferrite is then

expressed as the equivalent inductances with mutual cou-

pling.

2) The characteristic differential equation of the mag-

netized ferrite is formulated as the difference equation in

time domain by using the trapezoidal rule.

In the following sections, the formulation of the mag-

netized ferrite by the present method is described in detail.

Next, in discussing the validity of the formulation, results

are presented for two cases with respect to the relative

angle between the directions of the dc magnetic field and

wave propagation. One is for the wavelength versus dc
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Fig. 1. Three-dimensional lattice network model of Maxwell’s equation.

TABLE I

CORRESPONDENCE BETWEEN THE FIELD VARIABLES IN

MAXWELL’S EQUATION AND THE EQUIVALENT CIRCUIT AT

EACH KIND OF NODE IN THE EQUIVALENT CIRCUIT

,dc
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magnetic field in a perpendicularly magnetized rectangular

waveguide; the other is for the characteristics of Faraday

, effect, such as the phase constant and rotated angle in the

longitudinally magnetized cylindrical waveguide. For both

cases, die results are discussed along with analytical ones,

and the validity of the formulation is presented.

11. THREE-DIMENSIONAL NODAL EQUATION OF

ELECTROMAGNETIC FIELD BY BERGERON’S METHOD

In the present method, the electromagnetic field is ex-

pressed in the equivalent circuit of the three-dimensional

lattice network shown in Fig. 1. In this network, each set

115

of two-dimensional equations for the propagation of waves

in each plane is related to a node and connected lines. The

line between nodes is a one-dimensional transmission line,

and the node is a point where the continuity of current

occurs. In this figure, Ad is the interval between adjacent

nodes in the equivalent circuit. The black node . stands

for the electric node at which an electric field component

is treated as a voltage variable, and the white node O

stands for the magnetic node at which a magnetic field

component is treated as a voltage variable. In Table I, the

correlations between equivalent circuit variables and the

field ones are shown at every kind of node in the network.

All variables at the magnetic nodes are characterized by

the symbol * because of the duality of their physical

meaning, as compared with their interpretation at the

electric node. The present method has the characteristic

that both voltage and current variables for each direction

are assigned at each node in the lattice network. This

property enables us to calculate the effect of coupling

between the magnetic fields, which is related to the off-

diagonal elements of the permeability tensor.

HI. FORMULATION OF FERRITE

Girbert derived one differential form of phenomenologi-

cal damping of ferrite that is often used. The equation of

motion using the Girbert form of damping is written as

Y
M

H

a

d$ [1dti
—=
dt

–I@ixfi)+; fiix~

where

gyromagnetic ratio ( > O),

total magnetization,

total effective magnetic field,

loss parameter ( > O).

(1)

Now, it is assumed that the direction of a dc magnetic field

H, and a saturated magnetization M, are in the z direc-

tion; furthermore, an alternating magnetic field k and an

RF magnetization m is assumed to be much smaller than

H,, M,, respectively:

[1 []
mx h,v

@= my ii= hy . (2)

M, H,

Expanding (1) with M and H in (2) leads to

dmx dmy
—=–y(–~.h},+~,~y)–a~

dt
(3ri)

dmv dmx

dt =
– y(M,hx– H,mx )+a~. (3b)
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Rewriting the preceding equations yields

where

U, = yH, (4C)

am = yll, /p o (4d)

a, = 2aui (4e)

(d am = w.)m. (4f)

The coupling between the variables of the different

directions in the above equations is formulated as follows

‘ at the only node in which both combined components

exist. At node E, the magnetic field components H,, HY,

and the electric field E, are related from Table I, so (4a)

and (4b) can be used at node E, involving the coupling

terms between HX and HY. And at node A, where HX, H:,

and EV are concerned, the following equation, in which the

coupling term is removed from (4a), is related by

dh ,
=poqu.hx+po~am~. (5)

This is also the case at node D, where H,, H=, and EX are

concerned. So the following equation, in which the cou-

pling term is removed from (4b), is related by

dm,
(l+a’)Q&+.T7 + u~mv

Thus, the equivalent circuit at every node in the ferrite is

shown conceptually in Fig. 2, and a detailed conceptually

equivalent circuit for node E is shown in Fig. 3. In this
figure, the lumped inductances A LX, ALY represent the

noncoupling term in the equation, and the mutual coupling

expression A MXY shows the coupling term. For the steady
state, the former and the latter correspond to the diagonal

elements and the off-diagonal elements of the permeability y

tensor, respectively.

The description is mainly of the formulation at node E,

which is directly concerned with the gyroanisotropy of

ferrite caused by the coupling term in the characteristic

equation. Before the formulation of (4) by the trapezoidal

rule, the electromagnetic variables are transformed to

equivalent circuit ones. This treatment yields the formula-

Fig. 2. Unit equivalent circuit of magnetized ferrite for dc magnetic
field Hz,

%
F

1.2”

Fig. 3 Equivalent circuit at node E(l, m, n ) for dc magnetic field Hz,

tion of the unified nodal equation by use of the continuity

law of currents. At node E, the following correspondences

are arrived at from Table I:

IX=HY.

(7a)

(7b)

(7C)

Furthermore, new equivalent circuit variables JY, JX are

defined for magnetization mX, m ~, respectively. They obey

the correspondences of the magnetic field, so the defini-
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tions are similar to those of (7b) and (7c), and are given by where

JY=–mX (8a) KY(t) =
~ + LJ,(~) – kam~},(~) + km~l(t) (1OC)

JX=mY. (8b)
K\(t)= W + k,~.(~) – kan#y(f) – knll),(t). (lOd)

At the electric node E, the magnetic field corresponds to

the current variables in each connected line, so that JX, Jy Here, At is the time difference. A second application of
mean the magnetic flux of the equivalent inductance shown the trapezoidal rule to (lOa) and (lOb) at time t, using
in Fig. 3. Using (7) and (8), (4a) and (4b) are rewritten as (lOa) and (lOb) at time t – At, yields

( ‘~2)Jy(~)-(kaW+ kw#)~~p(l)+k*~~(t)l+kT; +k, —

(
‘:), ( )= l–k,:–k,— J (t–At)+ k.~+ki~~ #IY(t– At)–k~~IX(t –At)+KY(t– At)At (ha)

(

At2
l+k,$+k,—

)(

At At-

)
J.(t)– kan+k,~~ -#)-km:q(t)

(

4 ,A;2)JX(t-At)+(k.n+ ~~~);= l–k,;–k- 1 (t– At)+kn,;Iy(t –At)+KX(t– At) At. (llb)

follows, respectively:

d2J.
~ + k,? + k;JX= k,~IX+ km.?+ k.? (9b)

where

k,= (+/(1+ a2) (9C)

k,= u;/(1 + a2) (9d)

‘1.1=P’ooi@rn\(l+(X2] (9e)

ka~ = Po@an,/(l + a2) (9f)

km =pou#(l+ CY2). (9g)

These equations are the second differential equations

with respect to time t, so they can be transformed to the

difference form by twice using the trapezoidal rule.

By a first application of the trapezoidal rule to (9a) and

(9b) at time t, we obtain

K,(t)=– ~({,(r)+{},(t-A~))

+ +(q(t)+qt -At)) +Ky(wAt)

(lOa)

K,(t) = – ~(Jx(t)+Jx(r -At))

+ ~(lX(t)+ lX(~-At))+KX(t -At)

In this way, the second-order differential equations are

changed to the first-order difference equations by defini-

tion of the variables Ky and KX.

Next, in each connected line of the electric node, the

time derivative of the flux JY, JX causes the voltage drop

VY, VX in each inductance, respectively:

(iJX(t)
vx(t)=~.

(12a) ,

(12b)

Equations (12a) and (12b) are also transformed to the

difference form by”using the trapezoidal rule:

Jy(t) = ~(Vy(t) +~(t– At)) +Jy(t –At) (lsa)

JX(t) = ~(VX(t)+VX(t –At))+JX(t –At) (13b)

Finally, substituting (13a) and (13b) into (ha) and

(llb), respectively, the difference equations of voltage-

current characteristics of the magnetized ferrite on time

domain are as follows:

D1vy(t) –D21y(t)+D31x(t)

=–D1~,(t –At)+D21y(t –At)– D31X(t– At)

–D4.1y(t –At)+D5Ky(t –At) (14a)

D1vx(t) –D21x(t)– D31y(t)

= – DIVX(t –At)+D21X(t –At)+D31,(t- At)

(lOb) –D4JX(t –At)+D5KX(t -At) (14b)
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( At At= At1D1= l+k, y+k, — ~
4

Di = At.

(14C)

(14d)

(14e)

(14f)

(14g)

From equations (14), the inductance in Fig. 3 is defined as

AL, = ALY = D2/D1 and the conceptual mutual induc-

tance AMY, = Dz /D1 is expressed by the arrow mark. In

this expression, the gyroanisotropy is represented by the

difference in sign between the third term on the left side of

(14a) and (14b).

IV. NODAL EQUATIONS AND EQUIVALENT CIRCUIT

In Section III, the equation of motion of ferrite is

transformed to the difference equations using the equiv-

alent variables relative to magnetization: JX, JY, and

KX, KY. The definition of these variables makes it possible

to complete the iterative computation on the time domain

by use of the values obtained only at the previous time

step. In this section, these equations are combined with

Bergeron’s formulation of the one-dimensional line in the

three-dimensional network described in Section II. The
time difference At coincides with the transit time between

two adjacent nodes in the lattice network. The connection

of four lines is shown in Fig. 3. As shown in the figure, by

using the voltage variables Vzl, V,z, VZ3, and V=a in each

line, the voltage drop of each inductance for (13a), (13b) is

given by

q,(t) =K,(t)– L(~) (15a)

q2(t)=u(t)-E2(t) (15b)

v.xl(t)=~, (t)- ~(t) (15C)

vx2(t)=~(t)–~4(t) (15d)

where V,(t) is the voltage of node E. It is assumed that the

quantities of the variables of each coupling term in (14) are

as follows. The current variable 1X in the x direction in

(14a) is given by

Ix(t) =Ixl(t)+ I..,(t). (16a)

Similarly, for lY in the y direction in (14b),

{,,(t) =ly,(t)+ly=(t). (16b)

Substituting (15a) -(15d) into (14a) -(14b) by considering

(16a), (16b), the difference ecwations for each inductance

are as follows:

D1(~l(t) –~(t))– D21Y1(t)+D31X(t)

=–DIVV1(t –At)+D21Y1(t –At)– D31X(t– At)

–D4JV1(t –At)+D5KY1(t– At) (17a)

D1(~(t) –u2(t)) –D,{,2(t)+D3~x(t)

= – D1Vy2(t –At)+D21y2(t –At)– D31x(~– At)

–D4Jy2(t –At)+D5Ky2(t– Ar) (17b)

D,(~3(t) –u(t))– Dz~xl(t)– D3{,(~)

=–DIF’X1(t -At)+ D21X1(t -At)+ D31Y(t -At)

–D4JX,(t –At)+D,KX1(t– At) (17C)

D1(~(t) –~&))-D 21X,(t) -D31Y(t)

= – DIF’X2(t -At) +D21X2(t –At)+DJy(t -At)

–D4.JY2(i -At)+ D5KX2(i -At). (17d)

On the other hand, Bergeron’s expression of each trans-

mission line at node E(l, m, n) is given by

~1(1, m,n, t)+zolYl(l, n2, n,t)

=1$(1, n-l, n,t-At) +zO~Z*(l, m-l, n,t-At)

(18a)

lZ2(l, m,n, t)-zOI,,2(l, m,n, t)

=1,~(1, m+l, n,t– A~)–zO~Y *(l, m+l, n,t– At)

(18b)

~3(1, m.n, t)+zO1ll(l,m, n,t)

=1~(1-1, m,iz, t- At)+z O~p*(l-l, m,n, t-At)

(18c)

~q(l, m,n, t)–zOIX2(l, m,n, t)

=IJ(l+l, m,n, t- At)-zoVy*(l+ l,m, n,t-At)

(18d)

where the parameters 1, m, and n denote the described

position numbers in the x, y, and z directions, respec-

tive y. And ZO is the characteristic impedance of the line at
the electric node. Substituting (18a) –(18d) into (17a) –(17d)

and eliminating V,l, V=2, V=3, and VZ4, the following equa-

tions were obtained. For simplicity, the position parame-

ters 1, m, and n are omitted in these equations:

DIV=(t) +(zODl+ D&(t)-D31x(f)=D#l-El

(19a)

Dl~(i)– (zoDl+D=){,=(t) +D31X(~)=D1A2+E2

(19b)

DlV(t)+(20Dl+ D2)I.Yl(t)+D31Y(t) =D1A3– E3

(19C)

DIZ(t)– (zoD1+Dz)IXz(t)– D~I,(t) =D1Aq+E4

(19d)
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where El – E4 correspond to the right side of (17a) –(17d),

and A ~– A ~ correspond to the right side of (18a) –(18d),

respectively. These quantities are evaluated from values

computed at a previous time step of the iterative proce-

dure. By subtracting (19b) from (19a), and (19d) from

(19c), the equations about 1X in (16a) and lY in (16b) can

be obtained, respectively. Whereas (19a) -(19d) become

D1~(t)+ (zoD1+D2)Ivl(t) =DIA1-E,+D 31x(t)

(20a)

%~(f)-(zO% +~2)1,2(t) = ~l~2+E2–~31x(t)

(20b)

D,~(t)+ (zoD1+D2)lx,(t) =D,A3– E3– D31y(t)

(20C)

D~~(t)– (ZoD~+Dz)lx~(l) =D~A4+E4+D31,(t).

(20d)

The continuity of the current at node E(Z, m, n) is given

by

I,l(t)- Iy2(t)+ Ix,(t) -Ix2(i)=o. (21)

Substituting (20a) -(20d) into (21), the unified nodal

equation at the time t is given by

+,++2++3++4
Vz(l, nz, n,t)=

4D1
(22)

where +1, +2, +3, and 44 correspond to the right side of
(20a) -(20d), respectively. Each component of the currents

at the time t is calculated by substituting V=(t) in (22) into

(20a) -(20d), respectively:

lyl(t) = (~l– D1~(t))/(zoD1+D2) (23a)

IxI(t) = (+3 – DIVz(t))/(zoD1+ D2) (23c)

1X2(1) = –(+4– D1~(t))/(zoD1+ D2). (23d)

Similarly, Vzl(t)– Vzd(t) are computed by substituting

(23a) -(23d) into (18a)-(18d). Also, J_Yl(t), JY,(t), .TXl(t),

and {J. ?) are evaluated by substituting Vz(t ) and

V=l(t )– Vzd(t) into (13a) –(13b) using (15a) -(15d), respec-

tively. Finally, KYl(t), KY2(t), KXl(t), and Kx2(t) are

obtained by substituting lYl(t), Iy2(t), IxI(t), Ix2(t),

Jyl(t), Jy2(t), .lXl(t), and Jx2(t) into (lOa)-(lOb). At each

node E, the computation is performed, in this same proce-

dure, for each time step. At node A and node D, the

resultant formulations correspond to the noncoupling con-

dition of that at node E. Then the time response of the

field in the overall region is evaluated by the iterative

procedure at each node, in a manner similar to that at

node E.

In this analysis, the direction of the dc magnetic field is

supposed to be the z direction, but for the case where the

dc magnetic field is in the other direction, the equivalent

circuit and the formulation are similarly brought about.

F1g 4. Analyzed model of rectangular waveguide filled with ferrite.

Fig. 5. Eqmva]ent cmctut of the surface of the waveguide and the input
condi tmn, where R, IS the characterlst]c impedance of the waveguide
and E, M the voltage source,

V. NUMERICAL RESULTS AND DISCUSSION

To examine the validity of the formulation described in

the preceding section, two examples are taken with respect

to the relative angles between the directions of the dc

magnetic field and the wave propagation.

The first case is that where the angle is 90°. The

characteristic of A versus u is computed for various p.

Here, A is the wavelength in the perpendicularly mag-

netized rectangular waveguide filled with the ferrite shown

in Fig. 4. The length in the x direction is 38Ad; in the y

direction it is 148 Ad, and in the z direction it is 2Ad. The

thin structure of the z direction yields only the propa-

gation of the TE wave on the xy plane. Here u is the ratio

of the natural precession frequency to the signal frequency,

and p is the ratio of the frequency associated with the

saturation magnetization to the signal frequency. The wall

of the waveguide is supposed to have infinite conductivity y.

So the equivalent circuit in the present method for the

surface of the conductor is realized by 1) short-circuiting

the node on the surface, in which the tangential compo-

nent of the electric field or the normal component of the

magnetic field corresponds to the voltage variable and 2)

open-circuiting the node on the surface, in which the

preceding electromagnetic component corresponds to the

current variable as shown in Fig. 5. The input of the

sinusoidal wave is applied in each E node in the input

DEF plane, which includes the D, E, and F nodes shown

in Fig. 5. The wavelength A ~ of the input wave is 75A d in

free space. The mode of the input wave is assumed to be

the TEIO mode. The output plane is terminated by the

characteristic impedance of the TEIO mode to approximate

the matching condition. Using this model, the results ob-

tained are as shown in Fig. 6, where the dielectric constant
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Fig. 7. (a) Analyzed model of cylindrical wavegulde filled with ferrite
(b) Coordinate system of angle of rotation 91 for L-wave, OR for
R-wave, and OF for linear polarization,

c, is fixed to be 2, and u is changed under three parame-

ters of p, The analytical curves of wavelength are calcu-

lated by using peff, which is determined from given u and

p by the following formula:

~o/hPeff.

where

/L: – K:

Peff = —

P, -

I’ll
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1, [11111111 “
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Fig. 8 Arrangement of nodes on wall of cylindrical waveguide. (a)
.4Bl) plane (b) CEF plane.

From the above description, the present method uses only

primary parameters u and p forthemedium condition of

ferrite. The good agreement in Fig. 6 of the computed

wavelength with analytical ones shows the validity of the

formulation. At steady state, the simulation presents the

effect of o and p as the effective permeability p~ff. The

secondary parameters P. and K, are also involved in the

computation.

Next, the Faraday effect was simulated by a cylindrical

waveguide containing ferrite. Fig 7(a) shows the analyzed

model of the cylindrical waveguide. The direction of the dc

magnetic field is the same longitudinal direction as the

propagation. The radius of the waveguide is r.= 15Ad, and

the longitudinal length in the z direction 1= 100Ad. Fig.

7(b) shows the coordinate system for the angle of the plane

of the polarization t9~, 19R,and d~ along the z direction for

the L-wave, the R-wave, and the linear polarization, re-

spectively. The boundary conditions of the wall also have

perfect conductivity, and in Fig. 8, the arrangements of the
nodes on a quarter of the wall of the waveguide are shown

by the cross section of both the ABD and CEF planes.

The curve is approximated as stairs because of the cubical

lattice network. For simplicity a detailed description of the

treatment of these boundary conditions is not given. The
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Fig. 9. Time variation of electric field distribution of L-wave on centraf axis of waveguide. (a)

(c)t= tO+; T.(d) t=tO+T.

t= to. (b) t=to+~.

input of the sinusoidal wave is applied in the input plane

of ABD, and the mode of the input wave is assumed to be

the TEII mode. So the component EY of the TEII mode is

applied at node A. with correspondent amplitude distribu-

tion at the node. In similar fashion, Ex is also applied at

node D.. The R-wave and the L-wave are generated by

shifting the phase of the El and Ey components of the

input plane. The output plane is terminated by the char-

acteristic impedance of the TE II mode to appropriate the

matching condition.

Using this model, transient analysis is performed to

show the process of Faraday rotation. In this case, the

parameters of the ferrite are given by U( = Ui/Q) = 0.8,

p ( = urn/u) = 0.09, and a = O. T, which shows the period

of the applied wave, is 150At. This size of division, for the

size of the cylindrical waveguide and the period of the

applied sinusoidal wave, is sufficient for good resolution in

space and time. The input is applied at t = O.

Figs. 9, 10, and 11 shows the instantaneous time varia-

tion of the rotation of the electric field for a period on the

central axis for the input of the L-wave, the R-wave, and

the linear polarization, respectively. As shown in Figs. 9

and 10, the electric field rotates to the left and the right,

respectively, as the propagation distance in the z direction

increases. In Fig. 11, the resultant rotation of linear polari-

zation is observed, which is caused by the composition of

the L-wave and R-wave, These phenomena are supposed

to be the effect of Faraday rotation. Theoretically, under
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Fig. 10. Time variation of electric field distribution of R-wave on centraf axis of wavegaide. (a) f = f.. (b) t = to + $.

(c)i= tO+:T. (d)t=tO+T.

conditions of actual use, the refractive index for the R-wave

is smaller than that of the L-wave, so the phase velocity of

the R-wave is larger than that of the L-wave. Therefore, d~

should rotate to the right as the propagation distance in

the z direction increases, as shown Fig. 11. On the other

hand, Fig. 12 shows the time variation of the instantaneous

pattern of the electric field in the cross sections. The

observed plane is denoted by the slanted lines in Fig. 7(a).

In these figures, the rotation of the TEII mode is shown.

At each position on the z axis, the above condition causes

the elliptical polarization that rotates to the right. Further-

more, to ascertain the realization of the Faraday rotation,

there is an investigation into the composition of the L-wave

and the R-wave of circular polarization that causes the

rotation of the linear polarization. Fig. 13 shows the varia-

tion of the angles 8L and OR of the electric field of the

L-wave and the R-wave versus the propagation distance

along the z axis at t = to as shown in Figs. 9 and 10,

respectively. The angles d~ and 9~ are in good proportion

to the propagation distance, and the phase velocity of the

L-wave is smaller than that of the R-wave. These results

show that the propagation characteristics of the L-wave

and R-wave are well calculated. When comparing the line

of (8= – OR)/2 with plotted points of OF, they are in close

agreement. For the Faraday rotation, the points of the

maximum amplitude occur theoretically at the condition of

(13~+ 6~)/2 = 180n (n: integer). In this figure, this char-

acteristic is also observed for each plotted points of OF.
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field distribution of linear polarization on central axis of waveguide. (a) t = ?O.
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Fig. 12. Time variation of electric field distribution of linear polarization on cross section (Z= 10A d). (a) f = to.
(b)t=ro+;. (c)t= to+: T.(d) t=tO+T.
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Fig. 13. Angle of rotation 6’1, 8R, and 8F versus propagation distance.

Finally, there is an investigation into the phase constants
in the parameters used. For these conditions, the analyti-

cally obtained value of the phase constant ~/& of the

L-wave and the R-wave are 1.696 and 1.291, respectively

[11]. On tlie other hand, almost the same values are ob-

tained in this analysis. So, by these considerations, it can

be concluded that the Faraday effect of ferrite is simulated

by the present method.

VI. CONCLUSIONS

The fundamental formulation of the magnetized ferrite

in three-dimensional space and time domain by Bergeron’s

method is described. And the validity of this treatment is

(d)

shown by two cases according to the

direction; of the dc magnetic ~eld and
angle between the

the propagation of

a wave. In these analyses, the important cases of the

specific direction of the magnetic field, such as perpendic-

ular and longitudinal to the direction of wave propagation,

are studied, but the formulation for the optional direction

can be performed in a similar manner. Furthermore, for

the example analyzed, only sinusoidal excitation is used in

making comparisons with the analytical results, but the

formulation in this paper is a full-wave one on the time

axis. So this formulation can be easily applied to micro-

wave ferrite devices for high-speed pulse waves, which will

become more important with the development of digital

technology. We are applying this treatment to many kinds

of nonreciprocal devices, among them circulators and iso-

lators, using ferrite involving complicated boundary condi-

tions, and studying transient properties for the high-speed

pulse waves in the MIC. These results will be reported in

later papers.
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