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Transient Analysis of Ferrite in
Three-Dimensional Space
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Abstract —The anisotropic medium has been applied to realize the
nonreciprocal devices. The characteristics of these devices have become
more advanced through the appearance of various materials and the
miniaturization of the circuit created by the integration of circuits in MIC.
In particular for microwave and millimeter-wave circuits, ferrite is a typical
gyroanisotropic medium. So a significant amount of research and many
analyses have been carried out to develop nonreciprocal devices using
ferrite. To obtain more exact determinations of the properties of these
devices, it is necessary to analyze three-dimensional space due to their
complicated structures and the medium conditions. And recently, high-speed
digital technology has been developed, so that it is important to analyze the
electromagnetic field with time domain. This paper presents Bergeron’s
formulation of vector analysis for magnetized ferrite in a three-dimen-
sional space and time domain. Results are provided for two cases with
respect to the relative angle between the directions of the dc magnetic field
and wave propagation. For both cases, the results are compared with
analytical ones, and the validity of the formulation is verified.

1. INTRODUCTION

HE ANISOTROPIC medium has been applied to

realize such nonreciprocal devices as gyrators, isola-
tors, and circulators for the microwaves, millimeter waves,
and optical waves. The characteristics of these devices have
become more advanced through the appearance of various
materials and the integration of circuits in MIC, which has
brought about miniaturization. In particular, for micro-
wave and millimeter-wave circuits, ferrite is a typical
gyroanisotropic medium. So a considerable amount of
research and many analyses have been carried out to
develop nonreciprocal devices using ferrite.

In the past, most of these studies have been performed
using static and two-dimensional analyses. However, to
determine more exactly the properties of these devices, it is
necessary to analyze three-dimensional space because of
the medium conditions, which involve the tensor perme-
ability of ferrite and their complicated structures. Re-
cently, high-speed digital technology has been developed
and so it is important to analyze the eleciromagnetic field
with time domain. In these studies, a unified formulation
for both the boundary conditions and the characteristics of
medium is indispensable for calculating exact total three-
dimensional field responses in a time domain. Further-
more, the transient analysis of an electromagnetic field not
only clarifies the variation of the field in time but also
provides information on the mechanism by which the
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distribution of the electromagnetic field in the stationary
state is brought about. However, the computations involv-
ing all these medium and boundary conditions by analyti-
cal methods are usually very complicated and difficult.
Thus a numerical analysis method is required. The recent
advances of the digital computer in both speed and mem-
ory capacity enable us to solve the equations for actual
subjects. But conventional numerical methods are insuffi-
cient for the analyses in three-dimensional space and time
domain.

Therefore a new method has been proposed for the
transient analysis in the three-dimensional space. The
method is based on the equivalent circuit of Maxwell’s
equation and a formulation by Bergeron’s method (re-
ferred to here as the present method) [1], [2]. Useful results
have been reported by making use of the characteristics of
this method [3]-[6]. The present method has the character-
istic that both voltage and current variables for each
direction are assigned at each node in the lattice network.
This property permits calculation of the effect of coupling
between the magnetic fields, which is related to the off-
diagonal elements of the permeability tensor. So the pre-
sent method is useful for the analysis of nonreciprocal
devices involving an anisotropic medium.

However, the finite difference time-domain method and
the transmission line matrix method [7]-[9] do not have
this merit, because of assignment of the single field vari-
able at each node. For the two-dimensional space and time
domain, the effect of ferrite has already been formulated
by the present method [10]. In this paper, the formulation
of the magnatized ferrite in the three-dimensional space
and time domain is presented. The characteristics of the
formulation are summarized as follows.

1) An anisotropic medium is assumed with the lumped
elements in each node in the equivalent circuit of Maxwell’s
equation. The tensor permeability of the ferrite is then
expressed as the equivalent inductances with mutual cou-
pling.

2) The characteristic differential equation of the mag-
netized ferrite is formulated as the difference equation in
time domain by using the trapezoidal rule.

In the following sections, the formulation of the mag-
netized ferrite by the present method is described in detail.
Next, in discussing the validity of the formulation, results
are presented for two cases with respect to the relative
angle between the directions of the dc magnetic field and
wave propagation. One is for the wavelength versus dc
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Fig. 1. Three-dimensional lattice network model of Maxwell’s equation.

TABLE I
CORRESPONDENCE BETWEEN THE FIELD VARIABLES IN
MAXWELL’S EQUATION AND THE EQUIVALENT CIRCUIT AT
EacH KinND oF NODE IN THE EQUIVALENT CIRCUIT

Electric node Magneti1c node
Maxwel!'s equations Variables Maxwell's equations Variables
dHPx JHz IEy o AEx JEz 3J Hy x_
e dx- feac| Yy Byl Tan o) s e | Vs My
1) H H K
Ak -%—7y=—uu%—% lr=-tix[Fk —%%: e(,érl” 3= Ex
ALy _ Al _ JHy JE/, *
Eraies 1l el R I
dHz_ AdHy IEx _ dEy JEx IHz x_
3y "B fean| VrE Ex] Ty =T Vs M
B H Hz Ex
1 k %ﬁ"?uugﬁ’ 1e= Hy|Bk %—y= soaal 1i=—Ex
JEx JHy _ dHs ALy | x_
T3y = HRezr | ly=-Hy “Ix= Eegz| [X= By
JHy JHx 3/ . 3B/ 3By 3 Hx vis
ax dy- trac Vy=-Ez —a—y“—a—,L:‘ua—a—l Vx=-Hx
i H Hx E
Ik @;)—;,{:’U.éailx fy=—Hx [Ck %;2 Cu%)—ty 1% Ey
A JH 3 Hx | DF4
‘;;—x/ llu%Ty Ix= Hy Ty 54.% 1y=-E
diclectric constant  Co=40/2 dielectric constant Li=ta/2
permeabi ity Lo=#,/2 permeabt 11ty Ch=n,/2
polarization AC=toXe/2- Ad magnetization AC*=u,Xn/ 2+ Ad
conduclivily G=0/2+Ad nagnetic curreat joss G*=0"/2-Ad
magnetizalion Al =#,Xn/2-Ad polarizalion AI"=£"X0/2~ Ad

magnetic field in a perpendicularly magnetized rectangular
waveguide; the other is for the characteristics of Faraday
. effect, such as the phase constant and rotated angle in the
longitudinally magnetized cylindrical waveguide. For both
cases, the results are discussed along with analytical ones,
and the validity of the formulation is presented.

II. THREE-DIMENSIONAL NODAL EQUATION OF
ELECTROMAGNETIC FIELD BY BERGERON’S METHOD

In the present method, the electromagnetic field is ex-
pressed in the equivalent circuit of the three-dimensional
lattice network shown in Fig. 1. In this network, each set
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of two-dimensional equations for the propagation of waves
in each plane is related to a node and connected lines. The
line between nodes is a one-dimensional transmission line,
and the node is a point where the continuity of current
occurs. In this figure, Ad is the interval between adjacent
nodes in the equivalent circuit. The black node @ stands
for the electric node at which an electric field component
is treated as a voltage variable, and the white node O
stands for the magnetic node at which a magnetic field
component is treated as a voltage variable. In Table I, the
correlations between equivalent circuit variables and the
field ones are shown at every kind of node in the network.
All variables at the magnetic nodes are characterized by
the symbol % because of the duality of their physical
meaning, as compared with their interpretation at the
electric node. The present method has the characteristic
that both voltage and current variables for each direction
are assigned at each node in the lattice network. This
property enables us to calculate the effect of coupling
between the magnetic fields, which is related to the off-
diagonal elements of the permeability tensor.

III. FORMULATION OF FERRITE

Girbert derived one differential form of phenomenologi-
cal damping of ferrite that is often used. The equation of
motion using the Girbert form of damping is written as

MX—

dt

aM [ )

= —y(MXxH)+—
¥( T) [

dm
dt

where

v gyromagnetic ratio ( > 0),

M total magnetization,

H total effective magnetic field,
a loss parameter ( > 0).

Now, it is assumed that the direction of a dc magnetic field
H, and a saturated magnetization M, are in the z direc-
tion; furthermore, an alternating magnetic field # and an
RF magnetization m is assumed to be much smaller than

H,, M, respectively:
mx h
M=|™my H=|h, (2)
M, H,

Expanding (1) with M and H in (2) leads to

dm, dm
—Z == Mh,+Hm,)—a—" 3
==~ v(=Mh,+ Hm,)—a— (3a)
dmv dmx

L= - Hm,)+ ) 3b
7 Y(Mh,—Hm,)+a— (3b)
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Rewriting the preceding equations yields

L dm, dm,
(1+ a ) i’ + w77+ w;m
dh, dh,
= P‘szwmhx + P“Owam—t + ”me—; (43.)
5 d*m, dm, |
(1+a?) e + o +wm,
dh, dh,,
=#Owlwmhy+lu‘0wam7_lu'0wm_gt_ (4b)
where
©,=vH, (4c)
W, = YMS/MO (4d)
w, =2aw, (4e)
Wy = OW,,- (4f)

The coupling between the variables of the different
directions in the above equations is formulated as follows
" at the only node in which both combined components
exist. At node F, the magnetic field components H,, H,,
and the electric field F, are related from Table I, so (4a)
and (4b) can be used at node E, involving the coupling
terms between H, and H . And at node 4, where H,, H_,
and E, are concerned, the following equation, in which the
coupling term is removed from (4a), is related by
d*m dm,

dlzx +w,— 4+ wm

1+ a?)
( a) ‘rdt 1 X

dh,,

= B+ —= 5
Pow, @, 71, Y o®um dt ( )

This is also the case at node D, where H »» H,,and E_ are
concerned. So the following equation, in which the cou-
pling term is removed from (4b), is related by

d*m dm

y
dr?

(1+a?) L4 —+w,2my

“dr
dh,
= iU‘Owlwmhy + lu‘OwamW - (6)

Thus, the equivalent circuit at every node in the ferrite is
shown conceptually in Fig. 2, and a detailed conceptually
equivalent circuit for node E is shown in Fig. 3. In this
figure, the lumped inductances AL, AL, represent the
noncoupling term in the equation, and the mutual coupling
expression AM, , shows the coupling term. For the steady
state, the former and the latter correspond to the diagonal
clements and the off-diagonal elements of the permeability
tensor, respectively.

The description is mainly of the formulation at node E,
which is directly concerned with the gyroanisotropy of
ferrite caused by the coupling term in the characteristic
equation. Before the formulation of (4) by the trapezoidal
rule, the electromagnetic variables are transformed to
equivalent circuit ones. This treatment yields the formula-

Unit equivalent circuit of magnetized ferrite for dc magnetic
field H,.

Fig. 2.

Fig. 3 Equivalent circuit at node E(/, m, n) for dc magnetic field H,.

tion of the unified nodal equation by use of the continuity
law of currents. At node E, the following correspondences
are arrived at from Table I:

V.=-E, (7a)
I,=—H, (7b)
I,=H,. (7¢)

Furthermore, new equivalent circuit variables J,, J, are
defined for magnetization m_, m , respectively. They obey
the correspondences of ‘the magnetic field, so the defini-
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tions are similar to those of (7b) and (7c), and are given by
J,=—m, (8a)
Jo=m,. (8b)

At the electric node E, the magnetic field corresponds to
the current variables in each connected line, so that J,, J,
mean the magnetic flux of the equivalent inductance shown
in Fig. 3. Using (7) and (8), (4a) and (4b) are rewritten as

(i+k A2t+k£_)J(t) (k +k,mA2)AI(t)

1 kAt
T2

Af?

At
=(1—k,7 k,4 )J(t—At)+(k +k

zm2

follows, respectively:

ay,  di, dI,
L e A A T

dr dt ™t (%2)
dzJ 2J =k, .+ kom Iy k,, dI 9
dt T dt * dt 7 Hhng ()
where

k.=, /(1+a%) (9¢)

k= w,.z/(l + a2) (9d)

klm = l""()""z""’m/(1 + aZ) (9e)

k= pow,,/(1+a?). (%9g)

These equations are the second differential equations
with respect to time 7, so they can be transformed to the
difference form by twice using the trapezoidal rule.

By a first application of the trapezoidal rule to (9a) and
(9b) at time ¢, we obtain

K,(0) == S5 (0,0 + 4,6 30)

”;:At (Iy(t)+ L(t- At))+ K, (t—Ar)

(10a)

Ko(0) = = 220y 2 )

4 Z(Ix(t)+ I(t—Ar)+ K, (r—Ar)

(10b)

1+kA—+kA——)J(t) (k +k,mA2) I(¢t)—k,—

where
k(0 =2 (0= k(04 () (100)
K0 = (0= ko (0~ Ry (0. (100)

dt

Here, At is the time difference. A second application of
the trapezoidal rule to (10a) and (10b) at time ¢, using
(10a) and (10b) at time ¢ — At, yields

k,, I L(2)

Ar? At At At
k,4 J(t—At)+(k +k,m2) L(1—At)-k, I(t—At)+K(t—At)At (11a)

1,(¢)

Aty Ar At
—) -2—Ix(t —Af)+ km?Iy(t —At)+ K, (t—At)Ar. (11b)

In this way, the second-order differential equations are
changed to the first-order difference equations by defini-
tion of the variables K, and K,.

Next, in each connected line of the electric node, the
time derivative of the flux J,, J, causes the voltage drop
V,.V, in each inductance, respectively:

v, (1) = ‘Ui:) (12a)
pn - 240, (120)

Equations (12a) and (12b) are also transformed to the
difference form by‘using the trapezoidal rule:

J,(1) = (V(t)+V(t—At))+J (1—At) (13a)

J(t)—

Finally, substituting (13a) and (13b) into (11a) and
(11b), respectively, the difference equations of voltage—
current characteristics of the magnetized fernte on time
domain are as follows:

DlVy(t)_ Dzly(t)"' D3Ix(t)

(V ()+V,(t—At))+ J (t—At) (13b)

=~ DV, (1= A1)+ D,I,(t — At)— Dy, (t — At)

— D,J, (1= At)+ DsK (1 — At) (14a)

DIV;c(t) - DZIx(t)_ D3Iy(t)
=— DV, (t—At)+ DI (1= At)+ D1, (¢t — At)

— D,J (t—At)+ DK (1 — At) (14b)
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where
D 1+k Al k Ac?) A 14c)
= + k — | —
1 T ) + i 4 2 ( C
D k Ar) a1 (14d
= =+ _— ] —
2 ( ant m 2 ) 2 )
At
Dy=k,— (14e)
2
A 2
D4=kTA[+le (14f)
D, = At. (14g)

From equations (14), the inductance in Fig. 3 is defined as
AL.=AL,=D,/D, and the conceptual mutual induc-
tance AM,, = D, /D, is expressed by the arrow mark. In
this expression, the gyroanisotropy is represented by the
difference in sign between the third term on the left side of
(14a) and (14b).

1V. NobalL EQuATIONS AND EQUIVALENT CIRCUIT

In Section III, the equation of motion of ferrite is
transformed to the difference equations using the equiv-
alent variables relative to magnetization: J,, J,, and
K., K,. The definition of these variables makes it possible
to complete the iterative computation on the time domain
by use of the values obtained only at the previous time
step. In this section, these equations are combined with
Bergeron’s formulation of the one-dimensional line in the
three-dimensional network described in Section II. The
time difference At coincides with the transit time between
two adjacent nodes in the lattice network. The connection
of four lines is shown in Fig. 3. As shown in the figure, by
using the voltage variables V,;, V,,, V.5, and V,, in each
line, the voltage drop of each inductance for (13a), (13b) is
given by

Va(t) =Va() =V, (1) (15a)
Va(t) =V, (1) =V, (1) (15b)
Valt) =V3() - V(1) (15¢)
Vool 1) = V() = V,4(1) (15d)

where V,(7) is the voltage of node E. It is assumed that the
quantities of the variables of each coupling term in (14) are
as follows. The current variable I, in the x direction in
(14a) is given by

Ix(t)=jx1(t)+1t2(t) (163)
Similarly, for I, in the y direction in (14b),
(1) =L,(1)+ 1,(z). (16b)

Substituting (15a)—(15d) into (14a)-(14b) by considering
(16a), (16b), the difference equations for each inductance

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 36, NO. 1, JANUARY 1988

are as follows:
D(V,(t) =V, (1))~ D,I,(t)+ DyI (1)
=— DV, (t = At)+ Dy1,(t — At)— DyI(¢ — At)
= DyJ, (1 — A1)+ DK, (1 — At) (17a)
DI(I/Z(I)_I/z2(t))—D21y2(t)+D3Ix(t)
— DV, (1 = At)+ DI, (1 — At)— D31 (1 — At)
= DyJ,,(t — At)+ DsK (1 — Ar) (17v)
D, (V,5(1)~V, (1))~ D1 ,(1)— D3Iy(t)
=—DVy(t—At)+ Dy1,(t — At) + D,1 (1 — Ar)
— D,J(t—At)+ DK 1(t — At) (17¢)
Dl(Vz(t)“Vz4(t))_D21x2(t)_D3Iy(t)
=— DV, (t = At)+ D,1,(1 — At)+ D3I (1 - At)
— D,J,(t—At)+ DK ,(t — Ar). (17d)
On the other hand, Bergeron’s expression of each trans-
mission line at node E(/, m, n) is given by
Va(lom,n,t)+ zod (I, m, n,t)
=I13(I,m=T1,nt—=At)+zV*(I,m=1,n,t— At)
(18a)
Vo(lom,n,t)=zod 5 (1, m,n,t)
=Ix(l.m+1n,t~Ar)=zV*(Lm+1,n,1— At)
(18b)
Vall,mon,t)+zod ((I,m,n,t)
=I5(1=1,m,n,t—At)+ 2V *(I-1,m,n,t - Ar)
(18¢)
Voallymon, )=zl (I, m,n,t)
=I5+, m,n,t = At)—zV*(I+1,m,n, 1t — Ar)
(184d)

where the parameters /, m, and n denote the described
position numbers in the x, y, and z directions, respec-
tively. And z, is the characteristic impedance of the line at
the electric node. Substituting (18a)-(18d) into (17a)—(17d)
and eliminating V,,, V,,, V.5, and V,,, the following equa-
tions were obtained. For simplicity, the position parame-
ters /, m, and n are omitted in these equations:

DV(1)+(zoD, + Dz)l}q(t)_ D,1.(t)=D,A4,— E,

(19a)
D\WVAt)=(zoD, + Dz)lyz(t)‘F DyI,(1)=DA4,+E,

(19b)
DII/:([)+(‘:0D1 + Dz)lx1(t)+ D3Iy(t) =DA, - E;

(19¢)

DV A(1)—(zoD,+ D)) 1 ,(t)~ D3Iy(f) =DA,+E,
(19d)
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where E, - E, correspond to the right side of (17a)-(17d),
and A,—A, correspond to the right side of (18a)—(18d),
respectively. These quantities are evaluated from values
computed at a previous time step of the iterative proce-
dure. By subtracting (19b) from (19a), and (19d) from
(19¢), the equations about I, in (16a) and I, in (16b) can
be obtained, respectively. Whereas (192)-(19d) become
DV, (1) +(zoD, + D2)Iy1(t) = DA, — E,+ D,1,(1)
(20a)
DV, (1)~ (zoD1+ Dy)1,5(1) = DA, + E; — D31 (1)
(20b)
DV, (¢)+ (20D, + D,)1,(t) = Dy A; - Ey— D3Iy(t)
(20¢)
DV (t)~(zoDy+ D)1 ,(t) = DA, + E, + DyI,(1).
(20d)

The continuity of the current at node E(I, m,n) is given
by

Iyl(t)_Iy2(t)+Ix1(t)—Ix2(t)=O' (2])
Substituting (20a)-(20d) into (21), the unified nodal
equation at the time ¢ is given by

Y1+t Yty

V,(I,m,n,t) = D
1

(22)

where ¢4, ¥,, ¥, and ¢, correspond to the right side of
(20a)—(20d), respectively. Each component of the currents
at the time ¢ is calculated by substituting V,(¢) in (22) into
(20a2)—(20d), respectively:

Ly(0) = (41— DW,()) /(20D + Dy} (23a)
Ly(1) = = (¥, = DV, (1)) /(20D + D) (23b)
Ly(2) = (3= DV, (1)) /(20D1+ D;)  (23¢)
I,(1) = = (¥4 =DV, (1)) /(2,01 + Dy).  (23d)

Similarly, V,,(¢)-V,,(t) are computed by substituting
(232)—(23d) into (18a)—-(18d). Also, J ;(t), J,,(¥), Jq(?),
and J,,(¢) are evaluated by substituting V,(¢) and
V,(1)-V,,(¢) into (132)—(13b) using (15a)—(15d), respec-
tively. Finally, K (1), K5(?), K,4(#), and K,,(¢) are
obtained by substituting 1,(¢), I,(2), I4(2), I,(%),
(1), J,o(8), Ju(t), and J ,(¢) into (10a)—-(10b). At each
node E, the computation is performed, in this same proce-
dure, for each time step. At node A4 and node D, the
resultant formulations correspond to the noncoupling con-
dition of that at node E. Then the time response of the
field in the overall region is evaluated by the iterative
procedure at each node, in a manner similar to that at
node E.

In this analysis, the direction of the dc magnetic field is
supposed to be the z direction, but for the case where the
dc magnetic field is in the other direction, the equivalent
circuit and the formulation are similarly brought about.
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input plane

Fig 4. Analyzed model of rectangular waveguide filled with ferrite.

Fig. 5. Equivalent circuit of the surface of the waveguide and the input
condition, where R, 1s the characteristic impedance of the waveguide
and E, 1s the voltage source.

V. NUMERICAL RESULTS AND DISCUSSION

To examine the validity of the formulation described in
the preceding section, two examples are taken with respect
to the relative angles between the directions of the dc
magnetic field and the wave propagation.

The first case is that where the angle is 90°. The
characteristic of A versus o is computed for various p.
Here, A is the wavelength in the perpendicularly mag-
netized rectangular waveguide filled with the ferrite shown
in Fig. 4. The length in the x direction is 38Ad; in the y
direction it is 148 Ad, and in the z direction it is 2Ad. The
thin structure of the z direction yields only the propa-
gation of the TE wave on the xy plane. Here o is the ratio
of the natural precession frequency to the signal frequency,
and p is the ratio of the frequency associated with the
saturation magnetization to the signal frequency. The wall
of the waveguide is supposed to have infinite conductivity.
So the equivalent circuit in the present method for the
surface of the conductor is realized by 1) short-circuiting
the node on the surface, in which the tangential compo-
nent of the electric field or the normal component of the
magnetic field corresponds to the voltage variable and 2)
open-circuiting the node on the surface, in which the
preceding electromagnetic component corresponds to the
current variable as shown in Fig. 5. The input of the
sinusoidal wave is applied in each E node in the input
DEF plane, which includes the D, E, and F nodes shown
in Fig. 5. The wavelength A, of the input wave is 75Ad in
free space. The mode of the input wave is assumed to be
the TE,, mode. The output plane is terminated by the
characteristic impedance of the TE,;, mode to approximate
the matching condition. Using this model, the results ob-
tained are as shown in Fig. 6, where the dielectric constant
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Fig. 6. Charactenistic of A versus o for various p, where A is the
wavelength. o is the ratio of the natural precession frequency to the
signal frequency., and p 1s the ratio of the frequency associated with
the saturation magnetization to the signal frequency.
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Fig. 7. (a) Analyzed model of cylindrical wavegwide filled with ferrite

(b) Coordinate system of angle of rotation §, for L-wave, 8y for
R-wave, and 8, for linear polarization.

€, is fixed to be 2, and o is changed under three parame-
ters of p. The analytical curves of wavelength are calcu-
lated by using p g, which is determined from given o and
p by the following formula:

AO/\/Ernu‘eff

A:

A 2
1—] ——2
Vernu‘eff}\c
where
By — K}
Pegr =
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| [
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Fig. 8 Arrangement of nodes on wall of cylindrical waveguide. (a)

ABD plane (b) CEF plane.

From the above description, the present method uses only
primary parameters ¢ and p for the medium condition of
ferrite. The good agreement in Fig. 6 of the computed
wavelength with analytical ones shows the validity of the
formulation. At steady state, the simulation presents the
effect of ¢ and p as the effective permeability p ;. The
secondary parameters g, and k, are also involved in the
computation,

Next, the Faraday effect was simulated by a cylindrical
waveguide containing ferrite. Fig 7(a) shows the analyzed
model of the cylindrical waveguide. The direction of the dc
magnetic field is the same longitudinal direction as the
propagation. The radius of the waveguide is r, =15Ad, and
the longitudinal length in the z direction /=100Ad. Fig.
7(b) shows the coordinate system for the angle of the plane
of the polarization 8,, 6, and 6, along the z direction for
the L-wave, the R-wave, and the linear polarization, re-
spectively. The boundary conditions of the wall also have
perfect conductivity, and in Fig. 8, the arrangements of the
nodes on a quarter of the wall of the waveguide are shown
by the cross section of both the ABD and CEF planes.
The curve is approximated as stairs because of the cubical
lattice network. For simplicity a detailed description of the
treatment of these boundary conditions is not given. The
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input of the sinusoidal wave is applied in the input plane
of ABD, and the mode of the input wave is assumed to be
the TE,; mode. So the component E, of the TE,; mode is
applied at node A4, with correspondent amplitude distribu-
tion at the node. In similar fashion, E, is also applied at
node D,. The R-wave and the L-wave are generated by
shifting the phase of the E, and E, components of the
input plane. The output plane is terminated by the char-
acteristic impedance of the TE,; mode to appropriate the
matching condition.

Using this model, transient analysis is performed to
show the process of Faraday rotation. In this case, the
parameters of the ferrite are given by o(=w,/w)=0.8,
p(=w,/w)=009, and a=0. T, which shows the period
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Fig. 9. Time variation of electric field distribution of L-wave on central axis of waveguide. (a) t=1,. (b) t=1, +I
(©) t=to+2T.(d) t=1,+T.

of the applied wave, is 150A¢. This size of division, for the
size of the cylindrical waveguide and. the period of the
applied sinusoidal wave, is sufficient for good resolution in
space and time. The input is applied at ¢ =0.

Figs. 9, 10, and 11 shows the instantaneous time varia-
tion of the rotation of the electric field for a period on the
central axis for the input of the L-wave, the R-wave, and
the linear polarization, respectively. As shown in Figs. 9
and 10, the electric field rotates to the left and the right,
respectively, as the propagation distance in the z direction
increases. In Fig. 11, the resultant rotation of linear polari-
zation is observed, which is caused by the composition of
the L-wave and R-wave. These phenomena are supposed
to be the effect of Faraday rotation. Theoretically, under
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Fig. 10. Time variation of electric field distribution of R-wave on central axis of waveguide. (2) f=1t,. (b) t=1t¢+7.
(©t=t,+3T.(d) t=1t,+T.

conditions of actual use, the refractive index for the R-wave
is smaller than that of the L-wave, so the phase velocity of
the R-wave is larger than that of the L-wave. Therefore, 85
should rotate to the right as the propagation distance in
the z direction increases, as shown Fig. 11. On the other
hand, Fig. 12 shows the time variation of the instantaneous
pattern of the electric field in the cross sections. The
observed plane is denoted by the slanted lines in Fig. 7(a).
In these figures, the rotation of the TE;; mode is shown.
At each position on the z axis, the above condition causes
the elliptical polarization that rotates to the right. Further-
more, to ascertain the realization of the Faraday rotation,
there is an investigation into the composition of the L-wave
and the R-wave of circular polarization that causes the

rotation of the linear polarization. Fig. 13 shows the varia-
tion of the angles 8, and 6 of the electric field of the
L-wave and the R-wave versus the propagation distance
along the z axis at t=1t, as shown in Figs. 9 and 10,
respectively. The angles 8, and 8, are in good proportion
to the propagation distance, and the phase velocity of the
L-wave is smaller than that of the R-wave. These results
show that the propagation characteristics of the L-wave
and R-wave are well calculated. When comparing the line

“of (8; — 0z)/2 with plotted points of 8, they are in close

agreement. For the Faraday rotation, the points of the
maximum amplitude occur theoretically at the condition of
(0, +6x)/2=180n (n:integer). In this figure, this char-
acteristic is also observed for each plotted points of 8.
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Fig. 11. Time variation of electric field distribution of linear polarization on central axis of waveguide. (a) ¢=1t,.
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Fig. 12. Time variation of electric field distribution of linear polarization on cross section (Z=10Ad). (a) t=1,.
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Fig. 13. Angle of rotation 8, , 6, and 6, versus propagation distance.

Finally, there is an investigation into the phase constants
in the parameters used. For these conditions, the analyti-
cally obtained value of the phase constant B/B, of the
L-wave and the R-wave are 1.696 and 1.291, respectively
[11]. On the other hand, almost the same values are ob-
tained in this analysis. So, by these considerations, it can
be concluded that the Faraday effect of ferrite is simulated
by the present method.

VI. CoNCLUSIONS

The fundamental formulation of the magnetized ferrite
in three-dimensional space and time domain by Bergeron’s
method is described. And the validity of this treatment is

[N

N RN

continued

shown by two cases according to the angle between the
directions of the dc¢ magnetic field and the propagation of
a wave. In these analyses, the important cases of the
specific direction of the magnetic field, such as perpendic-
ular and longitudinal to the direction of wave propagation,
are studied, but the formulation for the optional direction
can be performed in a similar manner. Furthermore, for
the example analyzed, only sinusoidal excitation is used in
making comparisons with the analytical results, but the
formulation in this paper is a full-wave one on the time
axis. So this formulation can be easily applied to micro-
wave ferrite devices for high-speed pulse waves, which will
become more important with the development of digital
technology. We are applying this treatment to many kinds
of nonreciprocal devices, among them circulators and iso-
lators, using ferrite involving complicated boundary condi-
tions, and studying transient properties for the high-speed
pulse waves in the MIC. These resulis will be reported in
later papers.
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